triforce Documentation

Release 0.1.0

Cameron A. Craig

Contents

1	VESC Canbus Communication	3		
	1.1 CANBus Control	3		
	1.2 CanBus Status	4		
	1.3 Triforce Network Topology	4		
2	Drive Modes	7		
	2.1 3-Wheel Holonomic Drive	7		
	2.2 2 Wheel Differential Drive			
	2.3 Links	7		
3	Channels	9		
4	Turnigy 9X	11		
5	Spekrum DX6			
6	Hardware Versions	15		
	6.1 Triforce Jr. Jr. Jr	15		
	6.2 Triforce Alpha	15		
	6.3 Triforce Beta	16		
7	Indices and tables	17		

Contents:

Contents 1

2 Contents

VESC Canbus Communication

- A CAN Bus frame can contain a maximum of 8 bytes of data.
- Each CAN node has a unique ID, the ID determines the priority (ID 0 is most dominant).
- CAN messages from VESC use an extended ID (EID), containing the COMMAND and CONTROLLER_ID.

1.1 CANBus Control

These commands can be sent to a VESC node to control the motor and request status.

Command	ID	Data	Data Length	Data Type	Units
CAN_PACKET_SET_DUTY	0	Motor Duty Cycle	32- bit/4-by te	Signed Integer	Thous andth s of perce nt (5000 0 -> 50%)
CAN_PACKET_SET_CURREN T	1	Motor Cur- rent	32- bit/4-by te	Signed Integer	mA
CAN_PACKET_SET_CURREN T_BRAKE	2	Motor Brake Current	32- bit/4-by te	Signed Integer	mA
CAN_PACKET_SET_RPM	3	Motor RPM	32- bit/4-by te	Signed Integer	ERPM
CAN_PACKET_SET_POS	4	Motor Position			
CAN_PACKET_FILL_RX_B UFFER	5				
CAN_PACKET_FILL_RX_B UFFER_LONG	6				
CAN_PACKET_PROCESS_RX _BUFFER	7				
CAN_PACKET_PROCESS_SH ORT_BUFFER	8				
CAN_PACKET_STATUS	9	Request sta- tus	N/A		
CAN_PACKET_SET_CURREN T_REL	10				
CAN_PACKET_SET_CURREN T_BRAKE_REL	11				

[•] Motor position requires an encoder to be present.

1.2 CanBus Status

The VESC can be configured to send status updates at a set frequency.

1.3 Triforce Network Topology

666

Drive Modes

Triforce can operate in various drive configurations, these are described below. Please ensure you have the correct drive mode configured, otherwise Triforce will not move as expected.

2.1 3-Wheel Holonomic Drive

AKA Omni-Drive. This mode can operate using three standard rubber wheels or three omni wheels.

2.2 2 Wheel Differential Drive

A simple 'backup' drive configuration that requires less torque from the motors.

2.3 Links

• Society of Robotics: Robot Omni Wheel

• WikiBooks: Types of Robot

• Classification of Robots

Channels

Turnigy 9X

Channel #	Position	Purpose (Weapon Mode)	Purpose (Drive Mode)
Channel 1	Right stick X direction (Aileron)		
Channel 2	Right stick Y direction (Elevation)		
Channel 3	Left stick Y direction (Throttle)	Ring speed	
Channel 4	Left stick X direction (Rudder)		
Channel 5	Right back small switch	Arm weapon	
Channel 6	Top right dial		
Channel 7	Not used	Not used	Not used
Channel 8	Not used	Not used	Not used

Spekrum DX6

Channel #	Position	Purpose (Drive Mode)	Purpose (Drive Mode)
Channel 1	Left stick Y direction (Throttle)		
Channel 2	Right stick X direction (Aileron)		
Channel 3	Right stick Y direction (Elevation)		
Channel 4	Left stick X direction (Rudder)		
Channel 5	Switch A	Arm drive	
Channel 6	Switch D		

Hardware Versions

6.1 Triforce Jr. Jr. Jr.

Triforce Jr. Jr. Jr.

This was an early prototype that unfortunately did not reach combat spec. An off-the-shelf omni-mixer was demonstrated in this cardboard prototype. We decided in the end to roll our own omni-mixer for Triforce Alpha.

6.2 Triforce Alpha

Alpha

The very first (semi)functional version of Triforce used a three-wheel omni-drive system. We suffered a lot of teething issues with this, and shortly abbandoned the concept. In the future we do hope to resurrect this drive

method. We would much rather get a functional robot to start with, before investing considerable time into engineering a heavyweight omni-drive system.

6.3 Triforce Beta

Alpha

$\mathsf{CHAPTER}\ 7$

Indices and tables

- genindex
- modindex
- search